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Abstract

An algorithm for the solution of the incompressible Navier-Stokes equations in three-
dimensional generalized curvilinear coordinates is presented. The algorithm can be used to com-
pute both steady-state and time-dependent flow problems. The algorithm is based on the method
of artificial compressibility and uses a third-order flux-difference splitting technique for the convec-
tive terms and a second-order central difference for the viscous terms. Time accuracy is obtained
in the numerical solutions by subiterating the equations in pseudo-time for each physical time
step. The equations are solved with a line-relaxation scheme which allows the use of very large
pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiter-
ations of time-dependent problems. The steady-state solution of flow through a square duct with
a 90° bend is computed and the results are compared with experimental data. Good agreement
is observed. Computations of unsteady flow over a circular cylinder are presented and compared
to other experimental and computational results. Finally, the flow through an artificial heart
configuration with moving boundaries is calculated and presented.

Introduction

Numerical solutions to the incompressible Navier-Stokes equations are in greater demand
than ever before as the field of computational fluid dynamics (CFD) increases its impact as an
engineering tool. Problems which can be addressed by the incompressible Navier-Stokes equa-
tions include low-speed flows in aerodynamics, internal flows in propulsion, and even problems in
biomedical fluid analysis. The more efficient a code can become, the more useful a tool it will be
for analysis. Therefore, there is a continuing interest in finding solution methodologies which will
produce results using the least amount of computing time. This is particularly true for unsteady,
three-dimensional (3-D) problems. Time-accurate solutions of the incompressible Navier-Stokes
equations are particularly time consuming because of the elliptical nature of the governing equa-
tions. A disturbance at one point in space affects the entire flow domain instantaneously. This
requires that the numerical algorithm propagate information through the entire low domain dur-
ing one discrete time step. Another important item which directs the development of software
is the current trend of new hardware availability. The newest generation of supercomputers has
provided an order of magnitude increase in the available processor memory. This can be used to
efficiently implement memory intensive algorithms which would otherwise be too costly.

Recent work by the authors!? has lead to the development of a new solution procedure
utilizing the method of artificial compressibility and an upwind differencing technique. The
current work an extension of the two-dimensional (2-D) flow code into 3-D, as well as further
validation and analysis of the method. The artificial compressibility approach has been used
successfully by a number of other authors.®>~° The advantages of using this method are that it
directly couples the pressure and velocity fields at the same time level, and produces a hyperbolic
system of equations. The artificial waves are merely a mechanism for propagating information
throughout the domain, and driving the divergence of velocity toward zero. An appropriate
method for applying finite differences to a hyperbolic system is to use the direction of signal
propagation to bias the differencing stencil. Hence, some of the upwind differencing schemes
which have recently been developed for the compressible Euler and Navier-Stokes equations by

a number of authors®~® can be utilized. Using the method of Roe® the convective terms are
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differenced by an upwind method that is biased by the signs of the eigenvalues of the local flux
Jacobian. This is accomplished by casting the governing equations in their characteristic form and
then forming the differencing stencil such that it accounts for the direction of wave propagation.

The time-dependent solution capability comes from extending the artificial compressibil-
ity method by subiterating at each physical time step and driving the divergence of velocity toward
zero. Introducing the artificial compressibility relation for each physical time-step produces a hy-
perbolic system of equations; the same mechanism which is used for steady-state solutions is used
to obtain the time-dependent solution for each discrete physical time-step. This is in contrast to
other methods which utilize primitive variables, many of these require the solution of a poisson
equation in pressure at each time step. For example, see Harlow and Welch!? who developed the
MAC method, or Rosenfeld!!, who applied the fractional step method. The artificial compress-
ibility approach requires only that the subiterations be performed until the divergence of velocity
has reached some desired order of accuracy. The choice of this order of accuracy in no way effects
the stability of the computation. This generally requires only several subiterations per physical
time-step. Some of the other methods which solve a Poisson equation in pressure, such as the
MAC method of Harlow and Welch'®, must do so to machine accuracy to maintain stability and
to avoid accumulating error in the divergence of velocity from one time step to the next.

In the following sections, the details of the artificial compressibility scheme and its use in
solving the incompressible Navier-Stokes equations for steady-state and time-dependent problems
are given. Details of the implicit line-relaxation procedure are presented. The computed results
include the flow through a curved square duct, for which the numerical results are compared
with experimental data. The time-accurate capability is tested by computing flow over a circular
cylinder, studying both the transient growth of the separation bubble at a Reynolds number of
40, and of the vortex shedding at a Reynolds number of 100. Finally, the unsteady flow through
an artificial heart configuration with a moving boundary is presented.

Governing Equations and Artificial Compressibility

The governing equations for time-dependent, incompressible, constant density flow are
written in conservative form in generalized coordinates as
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For steady-state flow the /0t term is zero. In this equation 7 represents the right-hand side of
the momentum equations, where J is the Jacobian of the transformation and
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U= fzu + fyv + £z'w
V =neu+nyv+n.w
W = (.u+ Cyv + C.w
In deriving the viscous fluxes, constant viscosity was assumed for simplicity and because initially

only laminar flow calculations are being performed. This simplification is not necessary and will
be removed in the future. The viscous fluxes are then given by
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where Re is the Reynolds number and where both the velocity gradients in the viscous fluxes and
the metrics of the transformation were written as

du
73
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Steady-state formulation

The artificial compressibility relation is introduced by adding a pseudo-time derivative
of pressure to the continuity equation

2-e[4(5)5() £ )

where 7 is a pseudo-time variable, and is in no way related to the physical time ¢. Also, a pseudo-
time derivative of velocity is added to the momentum equations. In the steady-state formulation
the equations are to be marched in pseudo-time until the right-hand side # in Eq. (1) and the
divergence of velocity converges to zero. For steady-state solutions, derivatives with respect to
time ¢t are zero. Thus the resulting system of equations is obtained
oD 0, - Aoa A
5, __0§(E_Ev)_ (F-F,)— —=(G-G,)=-R (4)

where R is defined here as the residual vector of these equations and where
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The pseudo-time derivative is replaced by an implicit Euler finite-difference formula giving

f)m—l—l _ bm

— _Rm—l—l
AT

where the superscript m denotes quantities at the mth pseudo-time iteration level. The right-hand
side is linearized resulting in

Lo (9)
AT oD

where I is a 4 x 4 identity matrix. This equation is iterated in pseudo-time until the solution
converges, at which time the original steady-state incompressible Navier-Stokes equations are
satisfied. If Eq. (6) were solved exactly as it is, then for very large A7 this would become a
Newton iteration for a steady-state solution. Not only is it difficult to solve this equation exactly
due to the bandwidth of the left-hand side matrix, but also it is not feasible to form the exact
Jacobian of the residual vector R. This is because with the use of upwind differencing, it would
require the evaluation of a third-order tensor. Before these details are discussed, however, an
equation similar to Eq. (6) for time-dependent problems will be developed.

(f)m-l-l - Dm) — _Rm (6)

Time-accurate formulation

In the time-accurate formulation the time derivatives in the momentum equations are
differenced using a second-order, three-point, backward-difference formula

30t — 4a” 4 4!
2At

= "t (7)

where the superscript n denotes the quantities at time ¢ = nAt and 7 is the right-hand side given
in Eq. (1). To solve Eq. (7) for a divergence free velocity at the n+1 time level, a pseudo-time
level is introduced and is denoted by a superscript m. The equations are iteratively solved such
that " tH™ 1 approaches the new velocity 4" 1! ntlmtl approaches zero.
To drive the divergence of this velocity to zero, the artificial compressibility relation is introduced

in a fashion very similar to the steady-state case.

as the divergence of 4

oD 1 0

htnd - - _ pn+1
67_ + IAT 3,&71—1—1 — 44" + ,&n—l R (8)

where D is the same vector defined in Eq. (5) and R is the same residual vector defined in Eq.
(4). When this equation is iterated in pseudo time until 0D /07 = 0, Eq. (7) is satisfied and
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the divergence of velocity is zero. Applying an implicit Euler finite difference to the pseudo-time
derivative gives
Itr(f)n—l—l,m—l—l - bn+1,m)

pn+1l,m+1 Iy, An+1,m A7 An—1 (9)
— Rt (5D 2" 40,507

where
1 1 1.5 1 1.5 1 1.5

I”:dlag[zv Ar TAC A7 A A7 At
I, = diag[0, 1, 1, 1]

Finally, the residual term at the m+1 pseudo-time level is linearized giving the following

equation in delta form
afg n+1l,m
-[tr 4+ h (Dn—l—l,m—l—l - Dn—l—l,m)
oD
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(10)

Note that there is no linearization done in physical time. Equation (10) is very similar to the
steady-state formulation given by Eq. (6). In a sense the time-accurate formulation requires the
solution of a steady-state problem in order to advance one physical time step. Both systems of
equations will require the discretization of the same residual vector R. The derivatives of the vis-
cous fluxes in this vector are approximated using second-order central differences. The formation
of the convective fluxes, however, is not such a simple matter. For this, upwind differencing based
on the method of Roe® is used. Details of this formulation for the incompressible Navier-Stokes
equations can be found in Rogers and Kwak!. For all of the results reported in this paper, third-
order upwind differencing was used at the interior points, and second-order upwind differencing
was used at points next to the boundaries. This upwind scheme make use of the eigensystem of
the Jacobian of the convective flux vectors, which is included here, as the results presented in
ref.! is only for two dimensions. For the current formulation a generalized flux vector is given by

8Q

A 1| kyu+ kep + u@
FE, = — 11
J | kev+Eyp+0Q (11)

kiw + k.p 4+ w@

where E; = E,F, G for i = 1,2, and 3 respectively, and the metrics are represented with

o o¢; .
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£ 7 3 ky By 7 3
o . o¢;

kzz ,‘:1,2, k :.—,‘:1,2,
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and the contravariant velocity is

Q =keu+kyv+kow
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The Jacobian matrix A; = %—% of the flux vector in Eq. (11) is given by

0 k.f3 kB k.5

- kw kxu—}'Q‘}'kt kyu ]{jzu .

Ai = ky kyv kyv+Q + Ky kv (12)
k. k,w kyw kow—+ Q + ky

A similarity transform for the Jacobian matrix is introduced fll = XiAiXi_l where
Al‘ = diag[/\l, /\2, /\3, /\4]
=Q+k A=Q+k (13)

A =Q+k/24+¢c \q=Q+k/2—¢

and where ¢ is the scaled artificial speed of sound given by

e = \(Q+ /2 + B(k2 + 2 + R2) (14)
The matrix of the right eigenvectors is given by
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and its inverse is given by
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where

Ox Ox
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Eiv1=1n,(, or € for e = 1,2, and 3 respectively

T
Eive = (&, or npfor e =1,2, and 3 respectively

Implicit Scheme

The Egs. (6) and (10) are numerically represented and solved using a Gauss-Seidal line-
relaxation scheme similar to the one used by MacCormack!? and Chakravarthy.!® Approximate
Jacobians of the residual vector resulting from first-order upwind-differenced fluxes are substituted
for the % term on the left-hand side. Instead of factoring this banded matrix, it is approximately
solved using a line-relaxation. Using this, a sweep direction is chosen such that all terms on the
left-hand side from points along this direction are solved for implicitly. All terms on the left-hand
side from points off this sweep line are multiplied by the latest known AD and moved to the
right-hand side, where AD is equal to D™t — D™ for Eq. (6) or Drtlmtl _ Pntlm o1 By,
(10). The resulting set of equations is a tridiagonal system of 4 x 4 blocks. This system is solved
for each line as the domain is swept several times. For the computed results presented in this
paper two sweeps are used in each of the coordinate directions, once forward and once backward.

This sweeping process can be efficiently implemented on a vector processor using the
following ordering. When, for example, the sweep is chosen such that all points in the i-direction
(on a j=constant, k=constant line) are implicit, a forward sweep is carried out by solving each of
these i-lines for j=1, k=1 to kmax, then j=2, k=1 to kmax, then j=3, k=1 to kmax, etc. Solving
only one block tridiagonal system at a time is inherently recursive and very little vectorization
takes place. It is important to perform the sweeps like this such that the most recently computed
AD is available when forming the right-hand side of the next i-line. In other words the right-hand
side terms in a forward sweep will use AD at (i,j-1.k) and (i,j,k-1) from the current sweep level,
and at (i,j+1,k) and (i,j,k+1) from the previous sweep level. Trying to solve i-lines for j=1 to
jmax simultaneously or k=1 to kmax simultaneously will necessarily mean using more AD terms
from the previous sweep level, and this will severely reduce the convergence. This process can
be vectorized in only one way without reducing the use of the current sweep level information,
and that is to solve simultaneously for i-lines for whom j+k=constant. This means solving for
i-lines which all line on a diagonal plane cutting through the computational domain parallel to
the i-direction. The vector length for this process will be rather short at the beginning and ends
of the sweeps, but it’s implementation can reduce the time spent in the block-tridiagonal solver
by a factor of 4. This use of diagonal planes is similar to that used by Yoon et al.'* in an LU-SGS
scheme.

Boundary Conditions

Implicit boundary conditions are used at all of the boundaries which helps make possible
the use of large time steps. At a viscous no-slip surface, the velocity is specified to be zero, and the
pressure at the boundary is obtained by specifying that the pressure gradient normal to the wall
be zero. The boundary conditions used for inflow and outflow regions are based on the method of
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characteristics. The formulation of these boundary conditions is similar to that given by Merkle
and Tsai'®, the details of the current implementation can be found in Rogers and Kwak!.

Computed Results

Presented here are the results of three different laminar flow computations. These are
the flow through a square duct with a 90° bend, the flow over a circular cylinder, and the flow
through an artificial heart. For each of the test cases presented, the larger the pseudo-time step
AT was, the better the convergence was. In all of the cases presented here the solution remained
stable no matter how large a pseudo-time step was used, so it was set to 10'? which effectively
reduced the 1/A7 terms to zero. The choice of 3 for each case was arrived at through numerical
convergence tests. It was found that the convergence was sensitive to the value 3, and so its choice
is quite important. However, the code will converge well for a large range of 8 and will become
unstable only if extreme values are used. In the range of 3 for which the code will converge, there
is usually a value which will give optimum performance. For steady-state cases this is found to
be for 3 on the order of one to ten, and for time-dependent calculations it is on the order of 102
to 103.

As reported by the authors in a previous application of the artificial compressibility
method!®17, the parameter 3 controls the speed of the propagation of the artificial pressure
waves. If 3 is too small, it will not propagate the pressure wave fast enough to keep up with the
developing boundary layer and the diffusion of viscosity. These previous works used approximate
factorization. The error introduced by approximate factorization included terms of 4% and 33,
thus placing an upper bound on the allowable value of 3. No such upper bound exists in the
current application. This is illustrated by example in some of the computations in this next
section.

Square Duct with 90° Bend

The flow through a square duct with a 90° bend was used as a steady-state test case.
This particular geometry was studied experimentally by Humphrey et al.'® Three different grids
were used whose dimensions are 31 x 11 x 11, 61 x 21 x 21, and 121 x 41 x 41. The problem was
non-dimensionalized using the side of the square cross-section as the unit length, and the average
inflow velocity as the unit velocity. The Reynolds number was 790 based on the unit length and
velocity. The grid for the 31 x 11 x 11 case is shown in Fig. 1. The straight inflow section before
the bend was set to a length of five and the outflow section downstream of the bend was also set
to a length of five. The solutions have been tested and found to be independent of downstream
boundary locations and the downstream boundary conditions. The radius of curvature of the
inner wall in the curved section was 1.8 units in length. The inflow velocity profile was prescribed
to be that of a fully developed laminar straight square duct as given by White.!?
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Fig. 1 Geometry and grid (31 x 11 x 11) for computation of flow through a square
duct with a 90 degree bend.

As an example of how the code behaves for different values of 3, the 31 x 11 x 11 grid
was run with 3 set to values ranging from 0.1 to 10000. The convergence of the maximum residual
versus time is plotted in Fig. 2a. This shows that values of § ranging from 1.0 to 100 lead to

excellent convergence, and that the code will converge for very large values of 5. The remaining
computations for this problem used 3 values of 10.
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Fig. 2 Maximum residual versus iteration number for the flow through a square duct

with a 90 degree bend. a) Using different values of 5 on 31x11x11 grid. b) Using
different grids with 3 = 10.

The convergence history for the three grid cases is compared in Fig. 2b. The maximum
residual over all the grid points is plotted versus iteration number. The convergence is shown to
be very fast, and although it is slower for the finest grid, it is not dramatically so. The slower
convergence is to be expected for the finer grids because information has to propagate through a
greater distance in computational space. The velocity magnitude contours at the 90 degree cross
section at the end of the bend are compared for the 61x21x21 grid (right side) and the 121x41x41
grid (left side) in Fig. 3. This figure shows that there is very good comparison between the
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medium and the fine grid solutions throughout most of this cross section. In particular the
location and value of the maximum velocity magnitude agrees very well. The only difference is
that the swirling of the region of flow with higher velocity magnitude near the inner wall is more
dissipated in the medium grid.

Insidewall . | :
1.9

0
Outside wall

Fig. 3 Velocity magnitude contours for fine grid and medium grid computations at
6 = 90 degrees.

4

The computed results are compared to the experimental results of Humphrey et al.!® in
Fig. 4. Shown are the longitudinal velocity profiles at various streamwise stations for two different
cross-flow locations. The plots on the right side are from z=0.25, that is half way between the
x-y plane wall and the x-y symmetry plane. The second location, shown on the right side from
the x-y plane at z=0.5, or the x-y symmetry plane. In each of these figures, the profiles are
shown at four positions in the curved section corresponding to 6 equal to 0, 30, 60, and 90.°
The symbols represent the experimental results and the lines represent the computed fine-grid
solution. The results are fairly close to one another except for one trend. The forming of the second
maximum in the velocity on the inner wall side occurs further upstream in the computations than
in the experiment. This causes the discrepancy at the § = 60 degree location in both plots,
and the 8 = 90 degree location for the z=0.25 plot, where three different maxima occur in the
computations. More understanding of this can be gained by looking at the entire cross section.
In left-hand side of Fig. 5 the velocity magnitude contours from the fine-grid computations are
plotted at the 6§ = 30, 60, and 90 degree cross sections. These show first how the high-velocity
fluid moves very close to the outside wall, and it also shows the formation of the swirl which brings
some of this high-velocity fluid toward the inner wall, forming the second maximum in velocity
near the inside wall. Then at the 90 degree location the swirl has wrapped the region of higher-
velocity fluid around toward the middle, which is the mechanism which causes the third maximum
in velocity as seen in Fig. 4. It is thought that any small change in the Reynolds number, or even
a small amount of turbulent mixing could change this swirling mechanism enough to explain the
difference between the computation and the experimental measurements.
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U7 T A

Fig. 4 Computational (solid line) and experimental (dot) streamwise-velocity profiles
at four streamwise stations.

Also shown in Fig. 5 are the cross-stream velocity vectors. This figures shows one of
the pair of secondary vortices are generated by the large values of static pressure on the outside
wall which arises when the flow starts to negotiate the sharp bend. The center of these vortices
is seen to move towards the inside wall between the 6 = 30° station and the 6§ = 60° position.
The vortices tend to center again further downstream, and at the same time a secondary pair of
vortices are seen to appear. This agrees qualitatively with the observations of the experiment of
Humphrey et al.'®
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square duct at three streamwise stations.

14



Unsteady Flow Over a Circular Cylinder

The accuracy of the unsteady flow computations are verified for the problem of flow
over a circular cylinder in 2-D. A 91 x 90 O-grid was used whose spacing at the wall was 0.005
diameters, and whose points were clustered toward the cylinder surface and toward the wake.
The problems were run with a 3 of 100, using line-relaxation sweeps both forward and backward
in both coordinate directions. The subiterations were carried out until the maximum value of
the divergence of velocity was less than a convergence parameter €.. These cases were run for
different values of €, ranging from 107! to 10.74

The first problem run with this geometry was the case of an impulsively started flow at
a Reynolds number of 40. The separation length behind the cylinder was measured versus time.
These results are plotted in Fig. 6 for the first three values of e.. The results for ¢, = 107*
lie virtually on top of the 1072 results. Also plotted are the computations of Rosenfeld,!! the
experimental values of Coutanceau and Bouard,?? and the computations of Collins and Dennis.?!
The plot shows that values of €. of 0.1 does not give satisfactory results, but values lower than that
show results quite close to each other. The value of 0.1 requires only two subiterations per time
step, the value of 0.01 averaged three subiterations, the value 10™3 averaged five subiterations, and
the case of 10™* required an average of eight subiterations per time step. Thus the computational
time nearly doubled for each order of magnitude that the divergence of velocity was decreased.
However, any work done beyond five subiterations per time step did not change the solution.

2.5

2.0

157

— Epsilon =.001
---- Epsilon =.01
....... Epsilon=.1

o Rosenfeld

o Coutanceau & Bouard

x Collins & Dennis

1.0

Seperation Length

0.57

0.0 -— ‘ ‘ ‘ ‘ ‘
O 2 4 6 8 10 12 14

Time

Fig. 6 Growth of separation bubble behind circular cylinder versus time.
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The second problem computed for this geometry was the periodic vortex shedding at a
Reynolds number of 100. In order to obtain the periodic shedding behavior in the least amount
of time, the vortex shedding was triggered using an imposed tangential velocity over one half of
the cylinder surface. The computations used a time step of 0.1, and were run for 400 iterations.
For each case, Table 1 reports the CPU time in seconds on a Cray 2, the number of subiterations
used, the lift and drag coefficients, and the Strohal number based on the frequency of the lift.
These results show that the problem requires only that the maximum divergence of velocity be
reduced below 1073 to assure that enough subiterations are being used. However, the results
from €, = 1072 show that subiterating beyond this value will not change the solution very much,
and that six to eight subiterations are adequate for this problem. These computed value of the
Strouhal number (0.163) agrees well with many other reported results, including the experiment
of Tritton?? and of Kovasznay??, and the computation of Braza et al.?*, who all reported values
very near 0.16.

Table 1 Quantities for vortex-shedding calculations at Re = 100.

€c Time Subiterations Cy, Cp Strouhal No.
10~1 370 2-5 +0.424 1.393 4+ 0.012 0.161
1072 820 6-8 +0.362 1.377 £ 0.011 0.163
1073 1360 10-13 +0.359 1.376 £ 0.011 0.163
104 2610 17-26 +0.358 1.376 £ 0.011 0.163

Artificial Heart Flow

The present flow solver is currently being used to compute the flow inside an artificial
heart. The artificial heart was designed by Penn State University and is being studied experimen-
tally by Tarbell et al.2®> The purpose of the current calculations is to demonstrate and analyze
the present capability to compute a time-accurate incompressible flow through a complex internal
device with moving-boundaries. The initial calculations in this effort are presented here. Since a
number of primarily geometrical differences exist between these initial calculations and the actual
artificial heart experiment, which are detailed below, only the simplest of qualitative comparison
between computation and experiment can be made. Further work will attempt to remove these
differences so that the actual artificial heart geometry can be accurately modeled.

The geometry used for the current model is depicted in Fig. 7. The heart is composed of
a cylindrical chamber with two openings on the side for valves. The pumping action is provided
by a piston surface which moves up and down inside the chamber. The diameter of the piston
is 7.4 cm, with a stroke length of 2.54 e¢m. The problem was nondimensionalized with a unit
length of 2.54 em and a unit velocity of 40 cm/sec. The actual artificial heart has cylindrical
tubes extending out of each of the side valve openings. These contain tilting flat disks which
open and close to act as the valves. In the computational model these valves are not modeled,
instead the boundary conditions at the side openings are specified to instantaneously open and
close at the right moment. This simplification allows a single zone to be used to model the flow
inside the chamber. With the addition of more zones, however, it will be possible to model the
tilting disk valves as well. Additional simplifications made in the present computational model
include the movement of the piston. In the actual device the piston moves through the entire
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chamber volume, including across the majority of the valve opening. Because of grid-generation
problems, moving the piston past the valve openings would become quite difficult, and so the
piston is restricted to move only in the volume beneath the valve openings. The flow is assumed
laminar, and the Reynolds number based on the the unit length and velocity is set to 100. In the
actual heart the Reynolds number is about 600, and regions of the flow are turbulent. Finally,
the fluid is assumed to be Newtonian. This corresponds to the experiment of Tarbell et al.?® who
used a water and glycerin fluid whose viscosity is nearly the same as blood, about 3.5 centipoise,
but unlike blood is simulated by a Newtonian fluid assumption.

Outflow Vave Inflow Valve

Fig. 7 Artificial-heart geometry showing valve openings.

i‘ T

T
I

Fig. 8 Unwrapped grid used along side of the artificial heart near the region of the
valve openings.

Inside the heart an H-H grid topology with dimensions of 39 x 39 x 51 is used. Figure
8 shows the grid on the unwrapped surface of the side of the heart chamber. Grid lines were
placed along the lines of the valve openings to make implementation of the boundary conditions
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there straight forward. This surface grid was generated by dividing the surface into several zones
and using a biharmonic grid generator?® in each zone. The same grid generator was also used to
generate an H grid on the piston surface and on the top surface. To fill in the interior points, an
algebraic solver coupled with an elliptic smoother was used. As the piston moved up and down
inside the chamber, the grid points below the valve openings were compressed and expanded,
respectively. Thus a new grid was generated at each time step.

The flow was computed using a time step At of 0.025, and a 3 of 500. The piston moved
with a constant nondimensionalized velocity of £0.2 between it’s top and bottom positions, thus
requiring 200 physical time steps for one period of the piston’s motion. During each time step,
the subiterations were carried out until the maximum residual converged dropped below 1073
or until a maximum of 20 subiterations were used. This 20 subiteration limitation was used to
restrict the overall computing time need for the computation. During most of the piston’s cycle
only 12-15 subiterations were required, but when the piston was changing directions, it did not
completely converge in 20 subiterations. This “left over divergence” was quickly removed over
the next few time steps, and did not greatly change the solution. The computing time required
for each period of the piston’s motion was approximately four hours. The computations were run
for four periods during which time particle paths were computed after being released near the
inflow valve.

Figure 9a shows some of the computed particle traces as the piston nears it’s bottom
position. Two distinct vortices are seen to have formed from the flow separating as it enters
through the inflow valve. Figure 9b shows an experimental photograph (J. M. Tarbell: private
communication, 1988) of bubbles entering the inflow valve as the piston nears it’s bottom position.
A similar two-vortex system is seen to form here.

Computing Time

As expected, the computing time required for this code is greater than that required by a
central difference, approximate factorization code, due to the complexity of the upwind-difference
terms and the use of line-relaxation sweeps in more than one direction. The code runs between
100 to 200 microseconds per grid point per iteration on a Cray 2, depending on the number
of sweeps taken. For two-dimensional problems the computing time required is between 20 to
35 microseconds per grid point per iteration on a Cray 2. The three-dimensional code uses 50
words of memory for each grid point. The advantage of this algorithm is its ability to converge
quickly. For practical application, a steady-state solution is generally obtained after 4 orders of
magnitude reduction of the maximum residual. This will be achieved in about 100 iterations, as
was seen for the fine-grid duct case. Thus the computing time required for a steady-state solution
using sweeps in all three directions is 0.02 seconds per grid point. As a point of comparison, the
INS3D code®, which uses central differencing and approximate factorization, runs at about 30
2T on a Cray 2.
This code was used by McConnaughey et al.?® to run the same duct flow problem as reported
here. They reported using 2000 iterations to obtain a steady-state solution. Thus the INS3D
code uses about 0.06 seconds per grid point per solution. The current code represents a factor of

microseconds per grid point per iteration (using the diagonal algorithm version

20 increase in convergence rate, and a factor of 3 in overall computing time.
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9b. Experiment
Fig. 9 Incoming particle traces from computations and picture of experimental
results as the piston nears the bottom position.
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Another advantage to the present method isits robustness. When running a new problem
the only numerical parameter which must be specified is the artificial compressibility parameter
B. By contrast, the parameters which must be specified when running the INS3D code are 3,
the time step A7, and the artificial dissipation coefficients. In addition, the range of acceptable
values for 3 is significantly larger for the current algorithm, as illustrated by the duct problem.
Thus the amount of computing time and the amount of user time spent finding a proper set of
numerical values is greatly reduced in the present formulation.

For time-dependent flow problems, the current scheme will require on the order of 10
subiterations per time step. Thus the code will require on the order of 1000 microseconds per grid
point per time step for three-dimensional problems. For problems in two-dimensions, the time
is on the order of 200 microseconds per grid point per time step. This represents a significant
amount of computational resources for most problems. This is on the order of the same amount of
computing time required by a competing method, the fractional step as reported by Rosenfeld.!!
The problem primarily concerns the fact that the original equations are elliptic, thus the waves
propagate information instantaneously throughout the domain. To do this computationally re-
quires a lot computing time no matter what approach is taken.

Conclusion

An algorithm for computing both steady-state and time-accurate solutions to the incom-
pressible Navier-Stokes equations has been presented. The method of artificial compressibility
allows the equations to be solved as a hyperbolic system in pseudo-time. This requires the solu-
tion of a steady-state problem at each physical time step for the time-accurate formulation. The
use of upwind differencing makes the system of numerical equations diagonally dominant. With
the use of a nonfactored implicit line-relaxation scheme, the code can be run at very large time
steps, and very fast convergence is seen. The results showed adequate comparison with experi-
ment for the flow through a square duct. Comparison of flow over a circular cylinder for both an
impulsively started flow and periodic vortex shedding show that when the maximum divergence
of velocity is reduced to 10,73 accurate integration in time is obtained. This required 10 to 13
subiterations per time step. Adequate solutions, however, could be obtained for this problem
with even fewer subiterations. Finally, the computation of the flow through an artificial heart
shows the capability of the code to simulate complicated internal flows with moving boundaries.
Although the problems presented here are all for low Reynolds numbers, there is no inherent limit
to the Reynolds number which can be computed with this method. The overall robustness of the
code should help the code perform well at higher Reynolds numbers. Further advances in the
convergence speed of the algorithm will still be very helpful in increasing the usefulness of this
code as a design tool. This might be implemented using a multigrid cycle, and by studying ways
to accelerate the convergence of the line-relaxation procedure.
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